Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 6: 1872-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665057

RESUMO

To support nanocrystal device development, we have been working on a computational framework to utilize information in research papers on nanocrystal devices. We developed an annotated corpus called " NaDev" (Nanocrystal Device Development) for this purpose. We also proposed an automatic information extraction system called "NaDevEx" (Nanocrystal Device Automatic Information Extraction Framework). NaDevEx aims at extracting information from research papers on nanocrystal devices using the NaDev corpus and machine-learning techniques. However, the characteristics of NaDevEx were not examined in detail. In this paper, we conduct system evaluation experiments for NaDevEx using the NaDev corpus. We discuss three main issues: system performance, compared with human annotators; the effect of paper type (synthesis or characterization) on system performance; and the effects of domain knowledge features (e.g., a chemical named entity recognition system and list of names of physical quantities) on system performance. We found that overall system performance was 89% in precision and 69% in recall. If we consider identification of terms that intersect with correct terms for the same information category as the correct identification, i.e., loose agreement (in many cases, we can find that appropriate head nouns such as temperature or pressure loosely match between two terms), the overall performance is 95% in precision and 74% in recall. The system performance is almost comparable with results of human annotators for information categories with rich domain knowledge information (source material). However, for other information categories, given the relatively large number of terms that exist only in one paper, recall of individual information categories is not high (39-73%); however, precision is better (75-97%). The average performance for synthesis papers is better than that for characterization papers because of the lack of training examples for characterization papers. Based on these results, we discuss future research plans for improving the performance of the system.

2.
J Cheminform ; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track): S2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25810773

RESUMO

The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...